Jet Pump Design Basics

<< Click to Display Table of Contents >>

Navigation:  Tutorials >

Jet Pump Design Basics

Previous pageReturn to chapter overviewNext page

 

Introduction:

Many examples are provided in the samples datasets folder that use Jet-Pumps.  However, it is assumed that the user is familiar with the concepts of hydraulic pumping, jet pump operation, and the size designations of jet pumps. If not, a short Jet-Pump Primer is presented here.   If additional information is required, a useful jet pump reference is "JET PUMPING OIL WELLS." by Hal Petrie, Phil Wilson, and Eddie Smart. This is a series of three articles which appeared in WORLD OIL magazine in November 1983, December 1983, and January 1984. (NOTE: The equations presented in this series of articles are intended to be used with handheld calculators as opposed to computers.)  Also recommended is Chapter 6 of the PETROLEUM ENGINEERING HANDBOOK published by the Society of Petroleum Engineers. This chapter on hydraulic pumping contains further information on jet pumps and contains the algorithms upon which the SNAP jet-pump design is based.

Jet Pump performance Theory:

The specific jet pump performance relationships used in SNAP are based on experimental performance curves incorporating nozzle and throat sizes using water tests.  Since the Reynolds Number in the nozzle is always high, only specific gravity corrections are made when oil is used as a power fluid.  The Reynolds Number in the throat however, varies widely depending on the production rate and viscosity.  For this reason, a performance correction for produced fluid viscosity is included. This correction is based on jet pump testing done with Amoco Research on heavy oil with viscosities between 700 and 1900 cp.  

Further performance corrections are made for density differences between the power fluid and produced fluid. This includes the effect of free gas on the average density of the produced fluid. Free gas is handled as additional liquid, with an appropriate gas interference correction factor. The same nozzle and throat. sizes may be used in a variety of pumps and bottom hole assemblies. No corrections are made to account for the different pressure drops that would exist in the various assemblies and configurations possible for installation. If the nozzle and throat size limits and flow limits shown in Trico Industries, Inc. specifications are adhered to, then no corrections have been found to be necessary. Most recently, improvements in high GOR modeling were implemented to correct errors in the TRICO 4.1 Jet pump program.

As with all SNAP models, well fluids are corrected for temperature and pressure. Specific gravity, viscosity, shrinkage, solubility and formation volume factors are calculated at the appropriate spot in the vertical profile of the well. A linear temperature gradient from the surface to the pump is assumed for the internal pump calculations.  Steam vaporization is possible in high temperature, low pressure conditions but the steam will be modeled as a low density water phase and not as a gas.

Power fluid friction is calculated for the appropriate tubing size and fluid properties specified using descriptive data from all the panels. In the KOBE 4.1 Jet pump program, if gas is present, the return friction to the surface is calculated for the mix of power fluid and gassy produced fluid by means of the Orkiszewski Vertical Flowing Gradient Correlation. In SNAP, a full suite of hydraulics and produced fluid PVT relationships are available.

Jet pump cavitation limits are calculated for each pump intake pressure. The cavitation limit at a given pump intake pressure is the maximum flow possible.  Operating at or very near this limit will also result in cavitation erosion of the throat and subsequent diminished pump performance. The cavitation relationship accounts for free gas by assuming choked flow, and corrects for temperature using values from steam tables for the

The performance of a jet nozzle and throat combination is related to the size of the nozzle and the annular area between the throat and the jet stream of the nozzle. The flow area of KOBE nozzles and throats increases as a geometric progression of 101/9.  The flow area of any KOBE nozzle or throat is a constant multiple of 101/9 of the area of the next smaller size.  The flow area of OILMASTER nozzles and throats increases as a geometric progression of 4/PI.  The flow area of any OILMASTER nozzle or throat is a constant multiple 4/PI of the area of the next smaller size.

As the nozzle size and throat size increases, then the flow capacity increases. The larger nozzle flow area allows for greater nozzle flow and the larger annular area allows for larger volumes of oil, water, and gas to pass into the throat for the same differential pressure.

The ratio of the nozzle area to the throat area equals the area ratio. The program incorporates eight area ratios as follows: Y,X,A,B,C,D, E and F. The F ratio has the same area ratio as the E (throat 4 sizes larger than the nozzle) but with the World Oil curve instead of the KOBE curve.

Each nozzle and throat is assigned a size number based on the above geometric progression. A given nozzle size matched with the same numbered throat size will always give the same area ratio arid is designated as the A area ratio. The size designation 7-A is a size 7 nozzle in combination with a size 7 throat. Successively larger throats matched with a given nozzle size give the area ratios B, C, D, E, and F. A 7C is a size 7 nozzle with a size 9 throat. The area .ratio decreases; for each throat size greater than the nozzle. size number. The X and Y area ratios describe throat and nozzle combinations in which the throat size is less than the A ratio throat size for that nozzle size. The X and Y area ratio is larger than the A area ratio since the throat sizes are smaller.

As the area ratio progressively decreases from the A area ratio the throat size is increasing (B +1, C +2, D +3, E +4, and F +4).  Area ratios with an increasing throat size have a greater annular area for the flow of fluid around the nozzle.  Greater production rates are possible for a constant differential pressure, but less discharge head will develop due to shear effects that degrade the pressure recovery during mixing of the power fluid and the well produced fluids in the larger throats.

The reverse is true for the X and Y area ratios. Lower production rates occur as the throat size decreases (X -1, and Y -2) since the annular area available for fluid flow is progressively decreasing. Greater discharge head will develop due to better pressure recovery resulting from a reduction in the shear effects occurring in the smaller throats.

 

Design hints and workflow (based on the Trico Jet-Pump Manual):

In many cases you will be trying to select an optimum size within a horsepower constraint. The power required depends on the nozzle size, the operating pressure, the depth of the well, and the pump intake pressure. By trying a couple of sizes one can quickly determine the largest nozzle size that will match the horsepower limit. For a given nozzle size, there will be an optimum throat size (area ratio) to maximize production at a given power fluid pressure and pump intake pressure. By trying different ratios with the same nozzle size, the optimum ratio can be determined.

In general, larger throats with. a given nozzle lead to higher operating pressures because these ratios have. less pressure recovery. However, when power fluid friction is significant, the use of a larger ratio may lead to lower operating pressure if the nozzle size can also be reduced. To maximize the efficiency of a jet pump system use the smallest nozzle possible that prevents cavitation while operating at the highest power fluid pressure. The object is to minimize the power fluid loading while using the most efficient nozzle and throat combination. For example, an 8B use the same throat as a 9A, but has a larger annular area for cavitation and will use less power fluid at the same operating pressure. Normally the B ratio would require a higher operating pressure, but the savings in power fluid and return friction pressure drop may offset this. The only way to tell is to run several sizes and see which is the most efficient and which matches the surface power unit best. The system designed must also minimize the amount of power fluid that is bypassed by the pressure controller on the surface equipment since this is a direct waste of energy.

Related to the above discussion is the effect of pump discharge pressure on pump performance. Generally, it takes from 3 to 5 extra psi of power fluid pressure to maintain performance if the discharge pressure is increased by 1 psi.  This depends on the ratio, with the higher ratios being more sensitive. The discharge pressure depends on the gas-to-liquid ratio (GLR) in the return column.  The return GLR depends on how much power fluid is mixed with the production.  The use of a smaller nozzle can increase the GLR, lower the pump discharge pressure, and allow the use of a larger ratio pump in some cases.

In wells deeper than about 6000 feet, the use of oil power fluid typically results in better performance due to the decreased hydrostatic head.  Although the use of water as a power fluid increases the pressure at the nozzle, due to its higher density, it also increases the discharge pressure.  This latter effect dominates and becomes evident in deeper wells.  A power water system, when used in deep wells, tends to “load up” the return column and stalls out the jet pump because of the high discharge pressure required to lift the water.

In vertical multi-phase flow, there is an optimum pipe or annulus size that will give a minimum pump discharge pressure.  In the absence of gas, bigger is better on the return path, but with gas this may not be true due to changes in the type of flow regime that occur.  By comparing casing and tubing returns (casing free versus parallel installations) you can see the effect of return conduit size.

Remember that the program calculates a matrix of possible jet pump operating points for the well completion described by the input data.  The actual performance is the intersection of the well performance (IPR) curve with pump performance curves for the power fluid pressures selected.  Therefore, on a given plot of pump performance, any number of well performance curves can be drawn and the appropriate intersections noted.


Sample Jet Pump Output plot:

 

 

 


Sample JetPump Output report:

-----------------------------------------------------------------------------------   Page  1

               SNAP Jet Pump Module Running With Snap 2.143.497 10/14/2009

 

 Developed By Ryder Scott Company with funding from ConocoPhillips Alaska, Inc. 2005

 Solution Algorithm based on SPE Petroleum Engineering Handbook, Hal Petrie, 1990 

 Original pump performance relationship copyright Weatherford, Hai Phan 1982

 

--------------------------------------------------------------------------------------------

  Dataset: 15cJETPUMPtestwell41.snp            

  Title: Match to San Marcos Well TestWell.jpt

----------------------------------------------------------------------------------------------

 1) Perforation Depth       (ft) :   9000         13) Producing GOR  (scf/STB) :    100

 2) Pump Vertical Depth     (ft) :   9000         14) Gas Sp. Gravity (air=1.) :  0.850

 3) Pump Installation                             15) Separator Press   (psig) :  100.0

             Casing installation                  16) Well Static BHP   (psig) : 1000.0

 4) Casing (production) ID  (in) :  4.892         17) Pump Intake Press (psig) :  900.0

 5) N/A                                           18) Well Test Flow Rate(bpd) :   50.0

 6) Power Tubing ID         (in) :  2.441         19) Well Head Temp   (deg F) :  100.0

 7) Power Tubing OD         (in) :  2.875         20) Bottom Hole Temp (deg F) :  205.0

 8) Tubing Length           (ft) :   9100         21) Not Vented               : Not Vented

 9) Pipe Roughness e/d   (in/in) : 0.0018         22) Power Fluid oil/water    :    Oil

10) Oil Gravity            (API) : 30.000         23) Power Fluid API          :  30.03

11) Produced Vol Water Cut (%)   :  19.60         24) Bubble Point Press(psig) :    N/A

12) Water Specific Gravity       :  1.030         25) Well Head Press   (psig) :  100.0

=======================================================================================

  Oilmaster  7X  Pump Performance Summary 

      Target Production Rate of      50 BLPD at     900 psig pump intake pressure

      Predicted Surface Power Fluid Injection Pressure at Target =   1924 psig

      Predicted Surface Power Fluid Injection Rate     at Target =    948 bpf/d

      Predicted Pump Intake Pressure                   at Target =    900 psig

      Predicted Pump Discharge Pressure                at Target =   3367 psig

      Predicted Power Fluid Pressure at Pump depth     at Target =   5247 psig

=======================================================================================

                        ----------------- ----------------- ----------------- -----------------

 Match Prod Rate (blpd)       Rate=   145       Rate=   173       Rate=   199       Rate=   226

 Match Pwr Fluid Press (psig) PFP =  2500       PFP =  2666       PFP =  2833       PFP =  3000

 Match Pwr Fluid Rate (blpd)  QN  =  1023       QN  =  1044       QN  =  1065       QN  =  1086

 Match Pump Intake Pres(psig) PIP =   709       PIP =   654       PIP =   602       PIP =   548

 Pump Discharge Prs(psig)      PD =  3375       PD  =  3378       PD  =  3382       PD  =  3382

 Match Pwr Fld prs @pmp (psig) PN =  5832       PN  =  6000       PN  =  6170       PN  =  6339

                        ----------------- ----------------- ----------------- -----------------

PmpInPr  Qresvr    QCav  QSuctn  QNozzl cd QSuctn  QNozzl cd QSuctn  QNozzl cd QSuctn  QNozzl cd

   PSIG   STB/D   STB/D   STB/D     B/D     STB/D     B/D     STB/D     B/D     STB/D     B/D 

 ------ ------- ------- ------- ------- - ------- ------- - ------- ------- - ------- ------- -

   1000       0     398     200     993 0     238    1010 0     274    1027 0     309    1043 0 

    958      21     389     192     998 0     229    1014 0     266    1031 0     301    1047 0 

    917      42     381     183    1002 0     221    1018 0     257    1035 0     293    1051 0 

    875      63     372     176    1006 0     213    1023 0     249    1039 0     285    1055 0 

    833      83     363     168    1010 0     206    1027 0     242    1043 0     278    1059 0 

    792     104     354     160    1014 0     197    1031 0     234    1047 0     270    1063 0 

    750     125     344     152    1019 0     189    1035 0     226    1051 0     262    1067 0 

    708     146     335     145    1023 0     182    1039 0     219    1055 0     254    1071 0 

    667     167     325     138    1027 0     175    1043 0     212    1059 0     247    1075 0 

    625     188     314     130    1031 0     168    1047 0     203    1063 0     239    1079 0 

    583     208     304     123    1035 0     159    1051 0     196    1067 0     232    1083 0 

    542     229     293     116    1039 0     152    1055 0     188    1071 0     224    1087 0 

    500     250     280     109    1043 0     145    1059 0     181    1075 0     216    1091 0 

    458     271     263     101    1047 0     138    1063 0     173    1079 0     208    1095 0 

    429     285     251      97    1050 0     132    1066 0     168    1082 0     203    1097 0 

    375     311     228      87    1056 0     123    1071 0     159    1087 0     194    1102 0 

    333     329     209      80    1060 0     116    1075 0     152    1091 0     187    1106 0 

    292     344     190      74    1064 0     109    1079 0     144    1095 0     179    1110 0 

    250     358     171      66    1068 0     102    1083 0     137    1099 0     172    1114 0 

    208     371     151      60    1072 0      95    1087 0     130    1102 0     165    1118 0 

    167     381     129      53    1076 0      88    1091 0     124    1106 0     158    1121 0 

    125     390     105      47    1079 0      82    1095 0     117    1110 0     151    1125 0 

     83     396      77      40    1083 0      75    1099 0     110    1114 0     144    1129 4 

     42     401      47      34    1087 0      69    1103 0     102    1118 0     137    1133 4 

      1     405       0      27    1091 0      62    1106 0      96    1121 0     130    1136 0 

 ---------------------- ----------------- ----------------- ----------------- -----------------

 Maximum HP Required          HP =   53         HP =   58         HP =   62         HP =   67

 

 Successful Codes (cd): 0 = normal JP operation, 1 = Well flowing, 2 = Pump stalling 

 Failure Codes : 3 = could not find operating point, 4 Function diverges from solution:min error given

 

=======================================================================================


-----------------------------------------------------------------------------------   Page  2

               SNAP Jet Pump Module Running With Snap 2.143.497 10/14/2009

 

 Developed By Ryder Scott Company with funding from ConocoPhillips Alaska, Inc. 2005

 Solution Algorithm based on SPE Petroleum Engineering Handbook, Hal Petrie, 1990 

 Original pump performance relationship copyright Weatherford, Hai Phan 1982

 

--------------------------------------------------------------------------------------------

  Dataset: 15cJETPUMPtestwell41.snp            

  Title: Match to San Marcos Well TestWell.jpt

----------------------------------------------------------------------------------------------

 

Detailed Iteration Results for Solution Point                            Page 2 

This single page report attempts to re-run the jet-pump calculations at the predicted

Solution point from the prior calculations.  If this point solves back to the Target

Rate and pressure, it indicates that the solution is of high quality.  Conversly, if the 

last QLS value in the following table if far different from the target, a poor 

solution is indicated.

 

             Single Point Iteration Results for Solution Conditions

 

 

      Target Production Rate of      50 BLPD at     900 psig pump intake pressure

      Predicted Surface Power Fluid Injection Pressure at Target =   1924 psig

      Predicted Surface Power Fluid Injection Rate     at Target =    948 bpf/d

      Predicted Pump Intake Pressure                   at Target =    900 psig

 

 

ANOZ= 0.0104 in2  AANN= 0.0110 in2  SPGPF= 0.8760    VISPF= 4.0973 cp NzPrs=  5247.1 psig

SPGO= 0.8002      FVFO= 1.1163      SPGW=  1.0300    FVFW=  1.0436    SPGS=   0.8368

QN=      948      PLN=       4      QCAV=     377    HP=     36 hp    FVPFU=  1.0269

GOR=     100      GORS=    100    FREEGOR=      0    FVFG=  0.0184    DENAVE= 0.0000

Pwr Fluid Flow Area ID=  2.441 Equv Rad ID=  2.44    dpfric=   4.1    Nrey=  2330.48

 

Iter    QS   QOSTB     DQS     QD  PrsDis   CMR         FX     PR   DENR    QLS Error%   QGS  Code

 0 1263.13     922  157.77   2211   3401 1.3337 -0.5915100 0.5753  0.980  1263 2426.3%      0    3

 1 1263.13     922  157.77   2211   3401 1.3337 -0.5920176 0.5753  0.983  1263 2426.3%      0    3

 2 1105.36     806  157.77   2053   3397 1.1671 -0.5010337 0.5744  0.981  1105 2110.7%      0    3

 3  947.60     691  157.77   1895   3407 1.0005 -0.4211380 0.5767  0.981   948 1795.2%      0    3

 4  116.00      85   78.88   1064   3371 0.1225 -0.0330463 0.5683  0.981   116  132.0%      0    3

 5   45.19      33   39.44    993   3364 0.0477  0.0016319 0.5668  0.981    45   -9.6%      0    3

 6   48.52      35    1.00    996   3363 0.0512  0.0002775 0.5666  0.981    49   -3.0%      0    0